Raft-A-Vent™ is available in either white or black.
You can power-nail or screw down Raft-A-Vent and pre-attach to the blocking for fast installation!

Providing soffit ventilation for open-rafter construction has long been a headache for many builders. The options have been few, consisting mainly of a couple of screened-over holes in the blocking or a few metal grates every two or three rafter bays that don’t provide nearly enough ventilation and, quite honestly don’t look very good.

But COR-A-VENT® has the answer with its newest product, Raft-A-Vent™, a 22.5” long vent strip designed to fit between the rafters, on top of the blocking. Raft-A-Vent is the ideal product for this situation.

At only one inch thick, Raft-A-Vent will virtually disappear under the eave, but still provides 18.75’ of Net Free Vent Area per piece and is designed to run continuously in every rafter bay to provide the superior intake ventilation you need for a balanced vent system.

Good ventilation helps reduce moisture buildup and the possibility of mold growth. For an unmatched system, pair Raft-A-Vent up with any one of COR-A-VENT’s ridge vents, like V-300CS or FAV-20 8½”, both UL® Class A fire rated products.

Check the back of this of this flyer for information on nailing requirements and specifications.
Wall/Roof Junction (Refer to Detail A):
Assume unblocked roof diaphragm.
Refer to U.B.C. table 25-J-1. Case 1: For
8d @ 6" o.c. boundary nails in 2" framing
members the allowable shear is 240
pounds per foot. Replace 8d common
nails with 16d common nails. Refer to
U.B.C. table 25-G (common nail section).
8d penetration equal to 1-1/2", lateral
load equals 78#. 16d with
COR-A-VENT between roof deck and
diaphragm boundary, penetration equal to
1-3/4". Lateral load equals 108# (per 16d
nail), as compared to 78# for 8d nails
without COR-A-VENT.

Summary:
Replacing 8d nails at the roof diaphragm
boundary shown in Detail A with 16d
nails at same spacing, but driven through
a one inch thick section of COR-A-
VENT; Provides horizontal shear transfer
at least as great as outlined in the U.B.C.
code for the 8d nails. U.B.C. code must
be adhered to for nail spacing and
penetration. Alternate solution: If COR-
A-VENT is located elsewhere then retain
the one inch space above the block with
16d nails as shown on Detail A.

FROM U.B.C. TABLE NO. 25-G
(Latest Approved Revisions to Local Building Code):
Safe Lateral Strength And Required Penetration of Box And
Common Wire Nails Driven Perpendicular to Grain of Wood.

<table>
<thead>
<tr>
<th>SIZE OF NAIL</th>
<th>STANDARD LENGTH (inches)</th>
<th>WIRE GAUGE</th>
<th>PENETRATION REQUIRED (inches)</th>
<th>LOADS (pounds): 1:2:3</th>
<th>Douglas Fir, Larch or Southern Pine</th>
<th>Other Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>6d</td>
<td>2</td>
<td>11-1/2</td>
<td>1-1/4</td>
<td>63</td>
<td>See U.B.C. Standard No. 25-17</td>
<td></td>
</tr>
<tr>
<td>8d</td>
<td>2-1/2</td>
<td>10-1/8</td>
<td>1-1/2</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10d</td>
<td>3</td>
<td>9</td>
<td>1-5/8</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d</td>
<td>3-1/4</td>
<td>9</td>
<td>1-5/8</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16d</td>
<td>3-1/2</td>
<td>8</td>
<td>1-3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The safe lateral strength values may be increased 25 percent when metal side plates are used.
For wood diaphragm calculations these values may be increased 50 percent. (See U.B.C.
Standard No. 25-17.)
Tabulated values are on a normal load-duration basis and apply to joints made of seasoned lumber used in dry locations. (See U.B.C. Standard No. 25-17 for other service conditions.)

FROM UBC TABLE NO. 25-J-1 (Latest Approved Revisions to Local Building Code):
Allowable Shear in Pounds per Foot for Horizontal Plywood Diaphragms with Framing of Douglas Fir-Larch or Southern Pine.

<table>
<thead>
<tr>
<th>PLYWOOD GRADE</th>
<th>COMMON NAIL SIZE</th>
<th>MINIMUM NOMINAL PENETRATION IN FRAMING (inches)</th>
<th>MINIMUM NOMINAL PLYWOOD THICKNESS (inches)</th>
<th>MINIMUM NOMINAL WIDTH OF FRAMING MEMBER (inches)</th>
<th>BLOCKED DIAPHRAGMS</th>
<th>UNBLOCKED DIAPHRAGMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nail spacing at diaphragm boundaries (all cases), at corn</td>
<td>Nail spacing 6" max. at supported end</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>erion panel edge parallel to load (cases 3 and 4) and at</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>all panel edges (cases 5 and 6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 4</td>
<td>2-1/2</td>
</tr>
<tr>
<td>6d</td>
<td>1-1/4</td>
<td>5/16</td>
<td>2 3</td>
<td>185 210 250 375 420 475</td>
<td>165 185</td>
<td>125</td>
</tr>
<tr>
<td>8d</td>
<td>1-1/2</td>
<td>5/8</td>
<td>2 3</td>
<td>270 300 360 530 600 675</td>
<td>240 265</td>
<td>180</td>
</tr>
<tr>
<td>10d</td>
<td>1-5/8</td>
<td>15/32</td>
<td>2 3</td>
<td>320 360 425 640 720 820</td>
<td>285 320</td>
<td>215</td>
</tr>
<tr>
<td>STRUCTURAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 4 3</td>
</tr>
</tbody>
</table>

Summary:
Replacing 8d nails at the roof diaphragm
boundary shown in Detail A with 16d
nails at same spacing, but driven through
a one inch thick section of COR-A-
VENT; Provides horizontal shear transfer
at least as great as outlined in the U.B.C.
code for the 8d nails. U.B.C. code must
be adhered to for nail spacing and
penetration. Alternate solution: If COR-
A-VENT is located elsewhere then retain
the one inch space above the block with
16d nails as shown on Detail A.